Правила исследования функции с помощью производной. Исследуем функцию с помощью производной

На этой странице мы постарались собрать для вас наиболее полную информацию об исследовании функции. Больше не надо гуглить! Просто читайте, изучайте, скачивайте, переходите по отобранным ссылкам.

Общая схема исследования

Для чего нужно это исследование, спросите вы, если есть множество сервисов, которые построят для самых замудренных функций? Для того, чтобы узнать свойства и особенности данной функции: как ведет себя на бесконечности, насколько быстро меняет знак, как плавно или резко возрастает или убывает, куда направлены "горбы" выпуклости, где не определены значения и т.п.

А уже на основании этих "особенностей" и строится макет графика - картинка, которая на самом-то деле вторична (хотя в учебных целях важна и подтверждает правильность вашего решения).

Начнем, конечно же, с плана . Исследование функции - объемная задача (пожалуй, самая объемная из традиционного курса высшей математики, обычно от 2 до 4 страниц с учетом чертежа), поэтому, чтобы не забыть, что в каком порядке делать, следуем пунктам, описанным ниже.

Алгоритм

  1. Найти область определения. Выделить особые точки (точки разрыва).
  2. Проверить наличие вертикальных асимптот в точках разрыва и на границах области определения.
  3. Найти точки пересечения с осями координат.
  4. Установить, является ли функция чётной или нечётной.
  5. Определить, является ли функция периодической или нет (только для тригонометрических функций).
  6. Найти точки экстремума и интервалы монотонности.
  7. Найти точки перегиба и интервалы выпуклости-вогнутости.
  8. Найти наклонные асимптоты. Исследовать поведение на бесконечности.
  9. Выбрать дополнительные точки и вычислить их координаты.
  10. Построить график и асимптоты.

В разных источниках (учебниках, методичках, лекциях вашего преподавателя) список может иметь отличный от данного вид: некоторые пункты меняются местами, объединяются с другими, сокращаются или убираются. Учитывайте требования/предпочтения вашего учителя при оформлении решения.

Схема исследования в формате pdf: скачать .

Полный пример решения онлайн

Провести полное исследование и построить график функции $$ y(x)=\frac{x^2+8}{1-x}. $$

1) Область определения функции. Так как функция представляет собой дробь, нужно найти нули знаменателя. $$1-x=0, \quad \Rightarrow \quad x=1.$$ Исключаем единственную точку $x=1$ из области определения функции и получаем: $$ D(y)=(-\infty; 1) \cup (1;+\infty). $$

2) Исследуем поведение функции в окрестности точки разрыва. Найдем односторонние пределы:

Так как пределы равны бесконечности, точка $x=1$ является разрывом второго рода, прямая $x=1$ - вертикальная асимптота.

3) Определим точки пересечения графика функции с осями координат.

Найдем точки пересечения с осью ординат $Oy$, для чего приравниваем $x=0$:

Таким образом, точка пересечения с осью $Oy$ имеет координаты $(0;8)$.

Найдем точки пересечения с осью абсцисс $Ox$, для чего положим $y=0$:

Уравнение не имеет корней, поэтому точек пересечения с осью $Ox$ нет.

Заметим, что $x^2+8>0$ для любых $x$. Поэтому при $x \in (-\infty; 1)$ функция $y>0$ (принимает положительные значения, график находится выше оси абсцисс), при $x \in (1; +\infty)$ функция $y\lt 0$ (принимает отрицательные значения, график находится ниже оси абсцисс).

4) Функция не является ни четной, ни нечетной, так как:

5) Исследуем функцию на периодичность. Функция не является периодической, так как представляет собой дробно-рациональную функцию.

6) Исследуем функцию на экстремумы и монотонность. Для этого найдем первую производную функции:

Приравняем первую производную к нулю и найдем стационарные точки (в которых $y"=0$):

Получили три критические точки: $x=-2, x=1, x=4$. Разобьем всю область определения функции на интервалы данными точками и определим знаки производной в каждом промежутке:

При $x \in (-\infty; -2), (4;+\infty)$ производная $y" \lt 0$, поэтому функция убывает на данных промежутках.

При $x \in (-2; 1), (1;4)$ производная $y" >0$, функция возрастает на данных промежутках.

При этом $x=-2$ - точка локального минимума (функция убывает, а потом возрастает), $x=4$ - точка локального максимума (функция возрастает, а потом убывает).

Найдем значения функции в этих точках:

Таким образом, точка минимума $(-2;4)$, точка максимума $(4;-8)$.

7) Исследуем функцию на перегибы и выпуклость. Найдем вторую производную функции:



Приравняем вторую производную к нулю:

Полученное уравнение не имеет корней, поэтому точек перегиба нет. При этом, когда $x \in (-\infty; 1)$ выполняется $y"" \gt 0$, то есть функция вогнутая, когда $x \in (1;+\infty)$ выполняется $y"" \lt 0$, то есть функция выпуклая.

8) Исследуем поведение функции на бесконечности, то есть при .

Так как пределы бесконечны, горизонтальных асимптот нет.

Попробуем определить наклонные асимптоты вида $y=kx+b$. Вычисляем значения $k, b$ по известным формулам:


Получили, у что функции есть одна наклонная асимптота $y=-x-1$.

9) Дополнительные точки. Вычислим значение функции в некоторых других точках, чтобы точнее построить график.

$$ y(-5)=5.5; \quad y(2)=-12; \quad y(7)=-9.5. $$

10) По полученным данным построим график, дополним его асимптотами $x=1$ (синий), $y=-x-1$ (зеленый) и отметим характерные точки (фиолетовым пересечение с осью ординат, оранжевым экстремумы, черным дополнительные точки):

Примеры решений по исследованию функции

Разные функции (многочлены, логарифмы, дроби) имеют свои особенности при исследовании (разрывы, асимптоты, количество экстремумов, ограниченная область определения), поэтому здесь мы пострались собрать примеры из контрольных на исследование функций наиболее часто встречающихся типов. Удачи в изучении!

Задача 1. Исследовать функцию методами дифференциального исчисления и построить график.

$$y=\frac{e^x}{x}.$$

Задача 2. Исследовать функцию и построить ее график.

$$y=-\frac{1}{4}(x^3-3x^2+4).$$

Задача 3. Исследовать функцию с помощью производной и построить график.

$$y=\ln \frac{x+1}{x+2}.$$

Задача 4. Провести полное исследование функции и построить график.

$$y=\frac{x}{\sqrt{x^2+x}}.$$

Задача 5. Исследовать функцию методом дифференциального исчисления и построить график.

$$y=\frac{x^3-1}{4x^2}.$$

Задача 6. Исследовать функцию на экстремумы, монотонность, выпуклость и построить график.

$$y=\frac{x^3}{x^2-1}.$$

Задача 7. Проведите исследование функции с построением графика.

$$y=\frac{x^3}{2(x+5)^2}.$$

Как построить график онлайн?

Даже если преподаватель требует вас сдавать задание, написанное от руки , с чертежом на листке в клеточку, вам будет крайне полезно во время решения построить график в специальной программе (или сервисе), чтобы проверить ход решения, сравнить его вид с тем, что получается вручную, возможно, найти ошибки в своих расчетах (когда графики явно ведут себя непохоже).

Ниже вы найдете несколько ссылок на сайты, которые позволяют построить удобно, быстро, красиво и, конечно, бесплатно графики практически любых функций. На самом деле таких сервисов гораздо больше, но стоит ли искать, если выбраны лучшие?

Графический калькулятор Desmos

Вторая ссылка практическая, для тех, кто хочет научиться строить красивые графики в Desmos.com (см. выше описание): Полная инструкция по работе с Desmos . Эта инструкция довольно старая, с тех пор интерфейс сайта поменялся в лучшую сторону, но основы остались неизменными и помогут быстро разобраться с важными функциями сервиса.

Официальные инструкции, примеры и видео-инструкции на английском можно найти тут: Learn Desmos .

Решебник

Срочно нужна готовая задача? Более сотни разных функций с полным исследованием уже ждут вас. Подробное решение, быстрая оплата по SMS и низкая цена - около 50 рублей . Может, и ваша задача уже готова? Проверьте!

Полезные видео-ролики

Вебинар по работе с Desmos.com. Это уже полноценный обзор функций сайта, на целых 36 минут. К сожалению, он на английском языке, но базовых знаний языка и внимательности достаточно, чтобы понять большую часть.

Классный старый научно-популярный фильм "Математика. Функции и графики". Объяснения на пальцах в прямом смысле слова самых основ.

Точка называется точкой максимума (минимума) функции , если существует такая окрестность точки , что для всех из этой окрестности выполняется неравенство ().

Точки максимума и минимума функции называются точками экстремума (рис. 25).

Теорема 3.9 (необходимое условия существования точек экстремума). В критических точках 1-го рода производная функции либо

равна нулю, либо не существует

Критические точки 1-го рода принято называть просто критическими точками.

Критические точки, в которых производная функции равна нулю, называются точками стационарности . Критические точки, в которых функция непрерывна, но не дифференцируема называются угловыми точками . Например, функция в точке непрерывна, но производной не имеет, так как в этой точке к графику функции можно провести бесконечное множество касательных (рис. 26). Данный случай можно рассматривать в качестве подтверждения тому, что обратное утверждение к теореме 3.3 является неверным.

Функция называется возрастающей на некотором интервале , если на этом интервале большему значению аргумента соответствует большее значение переменной , и убывающей , если большему значению аргумента соответствует меньшее значение переменной .

Для дальнейшего исследования критические точки помещают на числовую ось, которая делится этими точками на интервалы, после чего поверяют выполнение следующих достаточных условий.

Теорема 3.10 (достаточное условие возрастания и убывания функции). Если на некотором интервале функция дифференцируема и при этом ее производная положительна (отрицательна), то функция на данном интервале возрастает (убывает)

Теорема 3.11 (достаточное условие существования точек экстремума функции). Если функция непрерывна и дифференцируема в некоторой окрестности критической точки и при переходе через нее производная меняет знак с плюса на минус, то точка является точкой максимума; если с минуса на плюс, то точка является точкой минимума функции

Те критические точки функции, для которых достаточное условие не выполняется, остаются просто критическими точками 1-го рода.

Критические точки 1-го рода, в которых производная не существует, делятся на два класса:

– точки, в которых функция непрерывна (при выполнении для них теоремы 3.11 функция в данных точках имеет «острый» экстремум), это угловые точки;

– точки, в которых функция терпит разрыв (всегда переходят в класс критических точек 2-го рода).

Но проведенное таким образом исследование, не дает ответ на очень важный вопрос: как возрастает (убывает) функция – выпукло или вогнуто? Ответ на поставленный вопрос дает дальнейшее исследование функции с помощью второй производной. Дадим ряд необходимых определений.

Функция называется выпуклой (вогнутой ) на некотором интервале , если касательная, проведенная к графику функции в каждой точке этого интервала, лежит выше (ниже) графика функции.

Точки, отделяющие участки выпуклости от участков вогнутости функции, называются ее точками перегиба (рис. 27).

Теорема 3.12 (необходимое условие существования точек перегиба) . В критических точках 2-го рода вторая производная функции либо равна нулю, либо не существует

Для дальнейшего исследования критические точки 2-го рода помещают на числовую ось, которая делится этими точками на интервалы, после чего поверяют выполнение следующих достаточных условий.

Теорема 3.13 (достаточное условие выпуклости и вогнутости функции). Если на некотором интервале функция дважды дифференцируема и при этом ее вторая производная положительна (отрицательна), то функция на данном интервале вогнута (выпукла)

Те критические точки функции, для которых достаточное условие не выполняется, остаются просто критическими точками 2-го рода.

Критические точки 2-го рода, в которых вторая производная не существует, делятся на два класса:

– точки, в которых функция непрерывна, это так называемые точки «острого» перегиба – в таких точках к графику функции можно провести бесконечное множество касательных (рис. 28);

– точки, в которых функция терпит разрыв (в точках разрыва 2-го рода график функции имеет вертикальную асимптоту).

Для окончательного перечисления точек экстремума и перегиба функции необходимо найти их ординаты, после чего выписать указанные точки двумя координатами.

Вопросы для самопроверки.

1. Какие точки называются точками экстремума (максимума и минимума) функции?

2. Какая функция называется возрастающей (убывающей)?

3. Каковы необходимое и достаточное условия существования точек экстремума функции?

4. В чем состоит достаточное условие возрастания (убывания) функции?

5. Какие точки называются точками перегиба функции?

6. Какая функция называется выпуклой (вогнутой)?

7. Каковы необходимое и достаточное условия существования точек перегиба функции?

8. В чем состоит достаточное условие выпуклости (вогнутости) функции?

Достаточное условие возрастания функции

Если в каждой точке интервала (a, b) f"(x)>0, то функция f(x) возрастает на этом интервале.

Достаточное условие убывания функции.

Если в каждой точке интервала (a, b) f"(x)

Определение:

x 0 называется критической точкой функции f(x), если

1) x 0 – внутренняя точка области определения f(x) ;

2) f"(x 0)=0 или f"(x 0) не существует.

Необходимое условие экстремума:

Если x 0 – точка экстремума функции f(x), то эта точка является критической точкой данной функции.

Достаточное условие экстремума:

Если при переходе через точку x 0 производная функции меняет знак, то x 0 – точка экстремума функции f(x).

Примеры экстремумов:

Схема исследования функции.

  1. Найти область определения функции.
  2. Проверить, не является ли функция четной или нечетной; проверить также, не является ли она периодической.
  3. Найти, если это возможно, точки пересечения графика функции с осями координат и промежутки знакопостоянства функции. Иногда для уточнения построения графика следует найти две три дополнительные точки.
  4. Найти производную функции и ее критические точки.
  5. Найти промежутки монотонности и экстремумы функции.
  6. Построить график функции, используя полученные результаты исследования.

Схема нахождения наибольшего и наименьшего значений функции f(x), непрерывной на отрезке .

  1. Найти значения функции в концах отрезка, т.е. f(a) и f(b) ;
  2. Найти значения функции в тех критических точках, которые принадлежат интервалу (a,b) ;
  3. Из найденных значений выбрать наибольшее и наименьшее.

Задачи и тесты по теме "Применение производной к исследованию функций"

Проработав данную тему, Вы должны научиться применять производную для исследования функций на монотонность и экстремумы, для нахождения наибольших и наименьших значений функций. Рассмотрим решение подобных задач на следующих примерах. Обратите внимание, что решение всегда начинается с нахождения области определения исследуемой функции.

Примеры.

1. Найти промежутки убывания и возрастания функции

Решение:

4)

(для определения знаков производной использовали метод интервалов)

Ответ: при функция убывает, при функция возрастает.

2. Исследовать функцию f(x)=x 3 -3x 2 +4 с помощью производной и построить ее график.

Решение:

4)

x=0 – точка максимума, x=2 – точка минимума.

5) f(0)=4; f(2)=0

Используя результаты исследования, строим график функции: f(x)=x 3 -3x 2 +4

МОУ средняя общеобразовательная школа № 18.

«Исследование функции с помощью производной».

Реферат по математике ко Дню науки.

Выполнила:

ученица 11”Б” класса

Бокарева Ирина Николаевна

Руководитель:

учитель математики

Батюкова Галина Викторовна.

Смоленск 2005


Введение. 3

Глава I. Развитие понятия функции. 4

Глава II. Основные свойства функции. 7

2.1. Определение функции и графика функции. Область определения и

область значений функции. Нули функции. 7

2.2. Виды функций (четные, нечетные, общего вида, периодические

функции). 8

2.3. Возрастание и убывание функций. Экстремумы. 10

Глава III. Исследование функций. 12

3.1. Общая схема исследования функций. 12

3.2. Признак возрастания и убывания функций. 12

3.3. Критические точки функции, максимумы и минимумы. 13

3.4. Наибольшие и наименьшие значения функции. 14

Глава IV. Примеры применения производной к исследованию функции. 15

Заключение. 22

Список литературы 23


Введение.

Изучение свойств функции и построение ее графика являются одним из самых замечательных приложений производной. Этот способ исследования функции неоднократно подвергался тщательному анализу. Основная причина состоит в том, что в приложениях математики приходилось иметь дело со все более и более сложными функциями, появляющимися при изучении новых явлений. Появились исключения из разработанных математикой правил, появились случаи, когда вообще созданные правила не годились, появились функции, не имеющие ни в одной точке производной.

Целью изучения курса алгебры и начал анализа в 10-11 классах является систематическое изучение функций, раскрытие прикладного значения общих методов математики, связанных с исследованием функций.

Выбрав тему реферата «Исследование функции с помощью производной» я поставила следующие задачи:

Систематизировать свои знания о функции, как важнейшей математической модели;

Усовершенствовать свое умение в применении дифференциального исчисления для исследования элементарных функций.

Развитие функциональных представлений в курсе изучения алгебры и начал анализа на старшей ступени обучения помогает старшеклассникам получить наглядные представления о непрерывности и разрывах функций, узнать о непрерывности любой элементарной функции на области ее применения, научиться строить их графики и обобщить сведения об основных элементарных функциях и осознать их роль в изучении явлений реальной действительности, в человеческой практики.

Работа над содержанием темы «Исследование функций с помощью производной» повысит уровень моей математической подготовки, позволит решать задачи более высокой сложности по сравнению с обязательным курсом.


Глава I. Развитие понятия функции.

Принципиально новая часть курса алгебры посвящена изучению начал анализа. Математический анализ – ветвь математики, оформившаяся в XVIII столетии и включающая в себя две основные части: дифференциальное и интегральное исчисления. Анализ возник благодаря усилиям многих математиков и сыграл громадную роль в развитии естествознания – появился мощный, достаточно универсальный метод исследования функций, возникающих при решении разнообразных прикладных задач. Знакомство с начальными понятиями и методами анализа – одна из важнейших целей курса.

Начиная с XVIII века одним из важнейших понятий является понятие функции. Оно сыграло и поныне играет большую роль в познании реального мира.

Необходимые предпосылки к возникновению понятия функции были созданы, когда возникла аналитическая геометрия, характеризующаяся активным привлечением алгебры к решению геометрических задач.

Идея функциональной зависимости возникла в глубокой древности. Она содержится уже в первых математически выраженных соотношениях между величинами, в первых правилах действий над числами, в первых формулах для нахождения площади и объема тех или иных фигур и геометрических тел.

Однако явное и вполне сознательное применение понятия функции и систематическое изучение функциональной зависимости берет свое начало в XVII веке в связи с проникновением в математику идеи переменных.

Четкого представления понятия функции в XVII веке еще не было, однако путь к первому такому определению проложил Декарт. Постепенно понятие функции стало отождествляться с понятием аналитического выражения – формулы.

Явное определение функции было впервые дано в 1718 году Иоганном Бернулли: «Функцией переменной величины называют количество, образованное каким угодно способом из этой переменной величины и постоянных».

Леонард Эйлер во «Введении в анализ бесконечных» (1748) примыкает к определению своего учителя И.Бернулли, несколько уточняя его. Правда, он не всегда придерживался вышеуказанного определения. Эйлер придает более широкий смысл функции, понимая ее как кривую, начертанную «свободным влечением руки».

В «Дифференциальном исчислении», вышедшим в свет в 1755 году, Эйлер дает общее определение функции: «Когда некоторые количества зависят от других таким образом, что при изменении последних и сами они подвергаются изменению, то первые называются функциями вторых».

Большой вклад в решение споров внес Жан Батист Жозеф Фурье, который впервые привел примеры функций, которые заданы на различных участках различными аналитическими выражениями.

Во второй половине XIX века понятие функции формулируется следующим образом: если каждому элементу х множества А поставлен в соответствие некоторый определенный элемент у множества В , то говорят, что на множестве А задана функция y=f(x), или что множество А отображено на множество В.

Общее понятие функции применимо, конечно, не только к величинам и числам, но и к другим математическим объектам, например, к геометрическим фигурам.

Это общее определение функции сформировалось уже в XVIII веке и первой половине XIX века. Но уже с самого начала XX века это определение стало вызывать некоторые сомнения среди части математиков.

Дирак ввел так называемую дельта-функцию, которая выходила далеко за рамки классического определения функции.

Сергей Львович Соболев первым рассмотрел частный случай обобщенной функции, включающей и дельта-функцию, и применил созданную теорию к решению ряда задач математической физики.

Важный вклад в развитие теории обобщенных функций внесли ученики и последователи Л.Шварца – И.М.Гельфанд, Г.Е.Шилов и другие.

Краткий обзор развития понятия функции приводит к мысли о том, что эволюция еще далеко не закончена и, вероятно, никогда не закончится, кА никогда не закончится и эволюция математики в целом.


Глава II. Основные свойства функции.

2.1. Определение функции и графика функции. Область определения и область значений функции. Нули функции.

Умение изображать геометрически функциональные зависимости, заданные формулами, особенно важно для успешного усвоения курса высшей математики.

Как известно, функциональной зависимостью называют закон, по которому каждому значению величины х из некоторого множества чисел, называемого областью определения функции, ставится в соответствие одно вполне определенное значение величины у; совокупность значений, которые принимает зависимая переменная у, называется областью изменения функции.

Независимую переменную х называют также аргументом функции. Число у, соответствующее числу х, называют значением функции f в точке х и обозначают f(x).

Функцию можно задать тремя способами: аналитический, табличный, графический.

Аналитический – с помощью формул.

Табличный – с помощью таблиц, где можно указать значения функции, однако лишь для конечного набора значений аргумента.

Графический способ задания функции очень удобен: он дает возможность наглядно представить свойства функции.

Графиком функции f называют множество всех точек (х;у) координатной плоскости, где y=f(x), а х «пробегает» всю область определения функции f.

Пример 1 . Найти область определения функции y=lg (2x-3)

Ответ: D(y)=(1,5; +∞).

Одним из понятий для исследования функции является нули функции.

Нули функции – это точки, в которых функция принимает значение нуля.

Пример 2. Найти нули функции y=x 2 -5x.

По определению:

Ответ: нулями функции являются точки x=0 и х=5.

Пример 3. Найти нули функции y=4x-8

По определению:

у=0, тогда

Ответ: нулями этой функции является точка х=2.

2.2. Виды функций (четные, нечетные, общего вида, периодические функции).

Рассмотрим функции, области определения которых симметричны относительно начала координат, то есть для любого х из области определения число (-х) также принадлежит области определения. Среди таких функций выделяют четные и нечетные.

Определение: Функция f называется четной, если для любого х из ее области определения f(-x)=f(x).

График четной функции симметричен относительно оси ординат.

Пример 4. Определить вид функции y=2cos2x.

y=2cos2x, D(y)=R

y(-x)=2cos2(-x)=-2cos2x=2cos2x=y(x) – четная.

Пример 5. Определить вид функции y=x 4 -2x 2 +2.

y=x 4 -2x 2 +2, D(y)=R.

y(-x)=(-x) 4 -2(-x) 2 +2=x 4 -2x 2 +2=y(x) – четная.

Определение: Функция f называется нечетной, если для любого х из ее области определения f(-x)=-f(x).

График нечетной функции симметричен относительно начала координат.

Пример 6. Определить вид функции y=2sin2x.

y=2sin2x, D(y)=R

y(-x)=2sin2(-x)=-2sin2x=-y(x) – нечетная.

Пример 7. Определить вид функции y=3x+1/3x.

y(-x)=3(-x)+1/3(-x)=-3x-1/3x=-(3x+1/3x)=-y(x) – нечетная.

Пример 4. Пример 5.