Элементарные решения последней теоремы ферма. Доказательство теоремы Ферма — элементарное, простое, понятное. Труды математика Фермера

Интерес к математике обозначился у Ферма как-то неожиданно и в достаточно зрелом возрасте. В 1629 г. в его руки попадает латинский перевод работы Паппа, содержащий краткую сводку результатов Аполлония о свойствах конических сечений. Ферма, полиглот, знаток права и античной филологии, вдруг задается целью полностью восстановить ход рассуждений знаменитого ученого. С таким же успехом современный адвокат может попытаться самостоятельно воспроизвести все доказательства по монографии из проблем, скажем, алгебраической топологии. Однако, немыслимое предприятие увенчивается успехом. Более того, вникая в геометрические построения древних, он совершает удивительное открытие: для нахождения максимумов и минимумов площадей фигур не нужны хитроумные чертежи. Всегда можно составить и решить некое простое алгебраическое уравнение, корни которого определяют экстремум. Он придумал алгоритм, который станет основой дифференциального исчисления.

Он быстро продвинулся дальше. Он нашел достаточные условия существования максимумов, научился определять точки перегиба, провел касательные ко всем известным кривым второго и третьего порядка. Еще несколько лет, и он находит новый чисто алгебраический метод нахождения квадратур для парабол и гипербол произвольного порядка (то есть интегралов от функций вида y p = Cx q и y p x q = С ), вычисляет площади, объемы, моменты инерции тел вращения. Это был настоящий прорыв. Чувствуя это, Ферма начинает искать общения с математическими авторитетами того времени. Он уверен в себе и жаждет признания.

В 1636 г. он пишет первое письмо Его преподобию Марену Мерсенну: ”Святой отец! Я Вам чрезвычайно признателен за честь, которую Вы мне оказали, подав надежду на то, что мы сможем беседовать письменно; ...Я буду очень рад узнать от Вас о всех новых трактатах и книгах по Математике, которые появилась за последние пять-шесть лет. ...Я нашел также много аналитических методов для различных проблем, как числовых, так и геометрических, для решения которых анализ Виета недостаточен. Всем этим я поделюсь с Вами, когда Вы захотите, и притом без всякого высокомерия, от которого я более свободен и более далек, чем любой другой человек на свете.”

Кто такой отец Мерсенн? Это францисканский монах, ученый скромных дарований и замечательный организатор, в течении 30 лет возглавлявший парижский математический кружок, который стал подлинным центром французской науки. В последствии кружок Мерсенна указом Людовика XIV будет преобразован в Парижскую академию наук. Мерсенн неустанно вел огромную переписку, и его келья в монастыре ордена минимов на Королевской площади была своего рода “почтамтом для всех ученых Европы, начиная от Галилея и кончая Гоббсом”. Переписка заменяла тогда научные журналы, которые появились значительно позже. Сборища у Мерсенна происходили еженедельно. Ядро кружка составляли самые блестящие естествоиспытатели того времен: Робервиль, Паскаль-отец, Дезарг, Мидорж, Арди и конечно же, знаменитый и повсеместно признанный Декарт. Рене дю Перрон Декарт (Картезий), дворянская мантия, два родовых поместья, основоположник картезианства, “отец” аналитической геометрии, один из основателей новой математики, а так же друг и товарищ Мерсенна по иезуитскому колледжу. Этот замечательный человек станет кошмаром для Ферма.

Мерсенн счел результаты Ферма достаточно интересными, чтобы ввести провинциала в свой элитный клуб. Ферма тут же завязывает переписку со многими членами кружка и буквально засыпает письмами самого Мерсенна. Кроме того, он отсылает на суд ученых мужей законченные рукописи: “Введение к плоским и телесным местам”, а год спустя - “Способ отыскания максимумов и минимумов” и “Ответы на вопросы Б. Кавальери”. То, что излагал Ферма, была абсолютная новь, однако сенсация не состоялась. Современники не содрогнулись. Они мало, что поняли, но зато нашли однозначные указание на то, что идею алгоритма максимизации Ферма заимствовал из трактата Иоханнеса Кеплера с забавным названием “Новая стереометрия винных бочек”. Действительно, в рассуждения Кеплера встречаются фразы типа “Объем фигуры наибольший, если по обе стороны от места наибольшего значения убывание сначала нечувствительно”. Но идея малости приращения функции вблизи экстремума вовсе не носилась в воздухе. Лучшие аналитические умы того времени были не готовы к манипуляциям с малыми величинами. Дело в том, что в то время алгебра считалась разновидностью арифметики, то есть математикой второго сорта, примитивным подручным средством, разработанным для нужд низменной практики (“хорошо считают только торговцы”). Традиция предписывала придерживаться сугубо геометрических методов доказательств, восходящих к античной математике. Ферма первый понял, что бесконечно малые величины можно складывать и сокращать, но довольно затруднительно изображать в виде отрезков.

Понадобилось почти столетие, чтобы Жан д’Аламбер в знаменитой “Энциклопедии” признал: “Ферма был изобретателем новых исчислений. Именно у него мы встречаем первое приложение дифференциалов для нахождения касательных”. В конце XVIII века еще более определенно выскажется Жозеф Луи граф де Лагранж: “Но геометры - современники Ферма - не поняли этого нового рода исчисления. Они усмотрели лишь частные случаи. И это изобретение, которое появилось незадолго перед “Геометрией” Декарта, оставалось бесплодным в течении сорока лет”. Лагранж имеет в виду 1674 г., когда вышли в свет “Лекции” Исаака Барроу, подробно освещавшие метод Ферма.

Кроме всего прочего быстро обнаружилось, что Ферма более склонен формулировать новые проблемы, нежели, чем смиренно решать задачи, предложенные метрами. В эпоху дуэлей обмен задачами между учеными мужами был общепринят, как форма выяснения проблем, связанных с субординацией. Однако Ферма явно не знает меры. Каждое его письмо - это вызов, содержащий десятки сложных нерешенных задач, причем на самые неожиданные темы. Вот образчик его стиля (адресовано Френиклю де Бесси): “Item, каков наименьший квадрат, который при уменьшении на 109 и прибавлении единицы даст квадрат? Если Вы не пришлете мне общего решения, то пришлите частное для этих двух чисел, которые я выбрал небольшими, чтобы Вас не очень затруднить. После того как Я получу от Вас ответ, я предложу Вам некоторые другие вещи. Ясно без особых оговорок, что в моем предложении требуется найти целые числа, поскольку в случае дробных чисел самый незначительный арифметик смог бы прийти к цели.” Ферма часто повторялся, формулируя одни и те же вопросы по несколько раз, и откровенно блефовал, утверждая, что располагает необыкновенно изящным решением предложенной задачи. Не обходилось и без прямых ошибок. Некоторые из них были замечены современниками, а кое какие коварные утверждения вводили в заблуждение читателей в течении столетий.

Кружок Мерсенна прореагировал адекватно. Лишь Робервиль, единственный член кружка, имевший проблемы с происхождением, сохраняет дружеский тон писем. Добрый пастырь отец Мерсенн пытался вразумить “тулузского нахала”. Но Ферма не намерен оправдываться: ”Преподобный отец! Вы мне пишете, что постановка моих невозможных проблем рассердила и охладила господ Сен-Мартена и Френикля и что это послужило причиной прекращения их писем. Однако я хочу возразить им, что то, что кажется сначала невозможным, на самом деле не является таковым и что есть много проблем, о которых, как сказал Архимед... ” и т.д..

Однако Ферма лукавит. Именно Френиклю он послал задачу о нахождении прямоугольного треугольника с целочисленными сторонами, площадь которого равна квадрату целого числа. Послал, хотя знал, что задача заведомо не имеет решения.

Самую враждебную позицию по отношению к Ферма занял Декарт. В его письме Мерсенну от 1938 г. читаем: “так как я узнал, что это тот самый человек который перед тем пытался опровергнуть мою “Диоптрику”, и так как Вы сообщили мне, что он послал это после того, как прочел мою “Геометрию” и в удивлении, что я не нашел ту же вещь, т. е. (как имею основание его истолковать) послал это с целью вступить в соперничество и показать, что в этом он знает больше, чем я, и так как еще из ваших писем я узнал, что за ним числится репутация весьма сведущего геометра, то я считаю себя обязанным ему ответить.” Свой ответ Декарт в последствии торжественно обозначит как “малый процесс Математики против г. Ферма”.

Легко понять, что привело в ярость именитого ученого. Во-первых, в рассуждениях Ферма постоянно фигурируют координатные оси и представление чисел отрезками - прием, который Декарт всесторонне развивает в своей только что изданной “Геометрии”. Ферма приходит к идее замены чертежа вычислениями совершенно самостоятельно, в чем-то он даже более последователен, чем Декарт. Во-вторых, Ферма блестяще демонстрирует эффективность своего метода нахождения минимумов на примере задачи о кратчайшем пути светового луча, уточняя и дополняя Декарта с его “Диоптрикой”.

Заслуги Декарта как мыслителя и новатора огромны, но откроем современную “Математическую энциклопедию” и просмотрим список терминов связанных с его именем: “Декартовы координаты” (Лейбниц, 1692) , “Декартов лист”, “Декарта овалы ”. Ни одно из его рассуждений не вошло в историю как “Теорема Декарта”. Декарт в первую очередь идеолог: он основатель философской школы, он формирует понятия, совершенствует систему буквенных обозначений, но в его творческом наследии мало новых конкретных приемов. В противоположность ему Пьер Ферма мало пишет, но по любому поводу может придумать массу остроумных математических трюков (см. там же “Теорема Ферма”, ”Принцип Ферма”, ”Метод бесконечного спуска Ферма”). Вероятно, они вполне справедливо завидовали друг другу. Столкновение было неизбежно. При иезуитском посредничестве Мерсенна разгорается война, длившаяся два года. Впрочем, Мерсенн и здесь оказался прав перед историей: яростная схватка двух титанов, их напряженная, мягко говоря, полемика способствовала осмыслению ключевых понятий математического анализа.

Первым теряет интерес к дискуссии Ферма. По-видимому, он напрямую объяснился с Декартом и больше никогда не задевал соперника. В одной из своих последних работ “Синтез для рефракции”, рукопись которой он послал де ла Шамбру, Ферма через слово поминает “ученейшего Декарта” и всячески подчеркивает его приоритет в вопросах оптики. Между тем именно эта рукопись содержала описание знаменитого “принципа Ферма”, который обеспечивает исчерпывающее объяснение законов отражения и преломления света. Реверансы в сторону Декарта в работе такого уровня были совершенно излишни.

Что же произошло? Почему Ферма, отложив в сторону самолюбие, пошел на примирение? Читая письма Ферма тех лет (1638 - 1640 гг.), можно предположить самое простое: в этот период его научные интересы резко изменились. Он забрасывает модную циклоиду, перестает интересоваться касательными и площадями, и на долгие 20 лет забывает о своем методе нахождения максимума. Имея огромные заслуги в математике непрерывного, Ферма целиком погружается в математику дискретного, оставив опостылевшие геометрические чертежи своим оппонентам. Его новой страстью становятся числа. Собственно говоря, вся “Теория чисел”, как самостоятельная математическая дисциплина, своим появлением на свет целиком обязана жизни и творчеству Ферма.

<…> После смерти Ферма его сын Самюэль издал в 1670 г. принадлежащий отцу экземпляр “Арифметики” под названием “Шесть книг арифметики александрийца Диофанта с комментариями Л. Г. Баше и замечаниями П. де Ферма, тулузского сенатора”. В книгу были включены также некоторые письма Декарта и полный текст сочинения Жака де Бильи “Новое открытие в искусстве анализа”, написанное на основе писем Ферма. Издание имело невероятный успех. Перед изумленными специалистами открылся невиданный яркий мир. Неожиданность, а главное доступность, демократичность теоретико-числовых результатов Ферма породили массу подражаний. В то время мало кто понимал как вычисляется площадь параболы, но каждый школяр мог осознать формулировку Великой теоремы Ферма. Началась настоящая охота за неизвестными и утерянными письмами ученого. До конца XVII в. было издано и переиздано каждое найденное его слово. Но бурная история развития идей Ферма только начиналась.

Поскольку мало кто владеет математическим мышлением, то я расскажу о наикрупнейшем научном открытии – элементарном доказательстве Великой теоремы Ферма – на самом понятном, школьном, языке.

Доказательство было найдено для частного случая (для простой степени n>2), к которому (и к случаю n=4) легко сводятся и все случаи с составным n.

Итак, нужно доказать, что уравнение A^n=C^n-B^n решения в целых числах не имеет. (Здесь значок ^ означает степень.)

Доказательство проводится в системе счисления с простым основанием n. В этом случае в каждой таблице умножения последние цифры не повторяются. В обычной, десятичой системе, ситуация иная. Например, при умножении числа 2 и на 1, и на 6 оба произведения – 2 и 12 – оканчиваются на одинаковые цифры (2). А, например, в семеричной системе для цифры 2 все последние цифры разные: 0х2=...0, 1х2=...2, 2х2=...4, 3х2=...6, 4х2=...1, 5х2=...3, 6х2=...5, с набором последних цифр 0, 2, 4, 6, 1, 3, 5.

Благодаря этому свойству для любого числа А, не оканчивающегося на ноль (а в равенстве Ферма последняя цифра чисел А, ну или В, после деления равенства на общий делитель чисел А, В, С нулю не равна), можно подобрать такое множитель g, что число Аg будет иметь сколь угодно длинное окончание вида 000...001. Вот на такое число g мы и умножим все числа-основания A, B, C в равенстве Ферма. При этом единичное окончание сделаем достаточно длинным, а именно на две цифры длиннее, чем число (k) нулей на конце числа U=А+В-С.

Число U нулю не равно – иначе С=А+В и A^n<(А+В)^n-B^n, т.е. равенство Ферма является неравенством.

Вот, собственно, и вся подготовка равенства Ферма для краткого и завершающего исследования. Единственное, что мы еще сделаем: перепишем правую часть равенства Ферма – C^n-B^n, – используя школьную формулу разложения: C^n-B^n=(С-В)Р, или аР. А поскольку далее мы будем оперировать (умножать и складывать) только с цифрами (k+2)-значных окончаний чисел А, В, С, то их головные части можем в расчет не принимать и просто их отбросить (оставив в памяти лишь один факт: левая часть равенства Ферма является СТЕПЕНЬЮ).

Единственное, о чем стоит сказать еще, это о последних цифрах чисел а и Р. В исходном равенстве Ферма число Р оканчивается на цифру 1. Это следует из формулы малой теоремы Ферма, которую можно найти в справочниках. А после умножения равенства Ферма на число g^n число Р умножатеся на число g в степени n-1, которое, согласно малой теореме Ферма, также оканчивается на цифру 1. Так что и в новом эквивалентном равенстве Ферма число Р оканчивается на 1. И если А оканчивается на 1, то и A^n тоже оканчивается на 1 и, следовательно, число а тоже оканчивается на 1.

Итак, мы имеем стартовую ситуацию: последние цифры А", а", Р" чисел А, а, Р оканчиваются на цифру 1.

Ну а дальше начинается милая и увлекательная операция, называемая в преферансе «мельницей»: вводя в рассмотрение последующие цифры а"", а""" и так далее числа а, мы исключительно «легко» вычисляем, что все они также равны нулю! Слово «легко» я взял в кавычки, ибо ключ к этому «легко» человечество не могло найти в течение 350 лет! А ключик действительно оказался неожиданно и ошарашивающе примитивным: число Р нужно представить в виде P=q^(n-1)+Qn^(k+2). На второй член в этой сумме обращить внимание не стоит – ведь в дальнейшем доказательстве мы все цифры после (k+2)-й в числах отбросили (и это кардинально облегчает анализ)! Так что после отбрасывания головных частей чисел равенство Ферма принимает вид: ...1=аq^(n-1), где а и q – не числа, а всего лишь окончания чисел а и q! (Новые обозначения не ввожу, так это затрудняет чтение.)

Остается последний философский вопрос: почему число Р можно представить в виде P=q^(n-1)+Qn^(k+2)? Ответ простой: потому что любое целое число Р с 1 на конце можно представить в таком виде, причем ТОЖДЕСТВЕННО. (Можно представить и многими другими способами, но нам это не нужно.) Действительно, для Р=1 ответ очевиден: P=1^(n-1). Для Р=hn+1 число q=(n-h)n+1, в чем легко убедиться, решая уравнение [(n-h)n+1]^(n-1)==hn+1 по двузначным окончаниям. И так далее (но в дальнейших вычислениях у нас необходимости нет, так как нам понадобится представление лишь чисел вида Р=1+Qn^t).

Уф-ф-ф-ф! Ну вот, философия кончилась, можно перейти к вычислениям на уровне второго класса, разве что лишь еще раз вспомнить формулу бинома Ньютона.

Итак, введем в расмотрение цифру а"" (в числе а=а""n+1) и с ее помощью вычислим цифру q"" (в числе q=q""n+1):
...01=(а""n+1)(q""n+1)^(n-1), или...01=(а""n+1)[(n-q"")n+1], откуда q""=a"".

И теперь правую часть равенства Ферма можно переписать в виде:
A^n=(а""n+1)^n+Dn^(k+2), где значение числа D нас не интересует.

А вот теперь мы переходим к решающему выводу. Число а""n+1 является двузначным окончанием числа А и, СЛЕДОВАТЕЛЬНО, согласно простой лемме ОДНОЗНАЧНО определяет ТРЕТЬЮ цифру степени A^n. И более того, из разложения бинома Ньютона
(а""n+1)^n, учитывая, что к каждому члену разложения (кроме первого, что погоды изменить уже не может!) присоединяется ПРОСТОЙ сомножитель n (основание счисления!), видно, что эта третья цифра равна а"". Но с помощью умножения равенства Ферма на g^n мы k+1 цифру перед последней 1 в числе А превратили в 0. И, следовательно, а""=0!!!

Тем самым мы завершили цикл: введя а"", мы нашли, что и q""=а"", а в заключение и а""=0!

Ну и остается сказать, что проведя совершенно аналогичные вычисления и последующих k цифр, мы получаем заключительное равенство: (k+2)-значное окончание числа а, или С-В, – так же, как и числа А, – равно 1. Но тогда (k+2)-я цифра числа С-А-В РАВНА нулю, в то время как она нулю НЕ РАВНА!!!

Вот, собственно, и всё доказательство. Для его понимания вовсе не требуется иметь высшее образование и, тем более, быть профессиональным математиком. Тем не менее, профессионалы помалкивают...

Удобочитаемый текст полного доказательства расположен здесь:

Рецензии

Здравствуйте, Виктор. Мне понравилось Ваше резюме. "Не позволить умереть раньше смерти" - здорово, конечно, звучит. От встречи на Прозе с теоремой Ферма, честно говоря, обалдела! Разве ей здесь место? Есть научные, научно-популярные и чайниковые сайты. А в остальном, спасибо за Вашу литературную работу.
С уважением, Аня.

Уважаемая Аня, несмотря на довольно жесткую цензуру, Проза позволяет писать ОБО ВСЕМ. С теоремой Ферма положение таково: крупные математические форумы к ферматистам относятся косо, с хамством и в целом третируют, как могут. Однако на мелких российских, английских и французских форумах я последний вариант доказательства представил. Никаких контрдоводов никто пока не выдвинул, да и, уверен, не выдвинет (доказательство проверено весьма тщательно). В субботу опубликую философскую заметку о теореме.
На прозе почти нет хамов, и если с ними не якшаться, то довольно скоро они отлипают.
На Прозе представлены почти все мои работы, поэтому и доказательство также поместил сюда.
До скорого,

В 17 веке во Франции жил юрист и по совместительству математик Пьер Ферма , который отдавал своему увлечению долгие часы досуга. Как-то зимним вечером, сидя у камина, он выдвинул одно прелюбопытнейшее утверждение из области теории чисел – именно оно в дальнейшем было названо Великой или Большой теоремой Ферма. Возможно, ажиотаж не был бы настолько весомым в математических кругах, не случись одно событие. Математик часто проводил вечера за штудированием любимой книги Диофанта Александрийского «Арифметика» (3 век), при этом записывал на ее полях важные мысли – этот раритет бережно сохранил для потомков его сын. Так вот, на широких полях этой книги рукой Ферма была оставлена такая надпись: «У меня есть довольно поразительное доказательство, но оно слишком большое, чтобы его можно было поместить на полях». Именно эта запись стала причиной ошеломительного ажиотажа вокруг теоремы. У математиков не вызывало сомнений, что великий ученый заявил о том, что доказал собственную теорему. Вы наверняка задаетесь вопросом: «Неужели он на самом деле ее доказал, или это была банальная ложь, а может есть другие версии, зачем эта запись, не дававшая умиротворенно спать математикам последующих поколений, оказалась на полях книги?».

Суть Великой теоремы

Довольно известная теорема Ферма проста по своей сути и заключается в том, что при условии, когда n больше двойки, положительного числа, уравнение Х n +Y n =Z n не будет иметь решений нулевого типа в рамках натуральных чисел. В этой с виду простой формуле была замаскирована невероятная сложность, и на ее доказательством бились целых три века. Есть одна странность – теорема опоздала с рождением на свет, так как ее частный случай при n=2 появился еще 2200 лет тому назад – это не менее знаменитая теорема Пифагора.

Необходимо отметить, что история, касающаяся всем известной теоремы Ферма, является очень поучительной и занимательной, причем не только для ученых-математиков. Что самое интересное, так это то, что наука являлась для ученого не работой, а простым хобби, которое в свою очередь, доставляла Фермеру огромное удовольствие. Также он постоянно поддерживал связь с ученым-математиком, а по совместительству, еще и другом, делился идеями, но как ни странно, собственные работы опубликовывать в свет не стремился.

Труды математика Фермера

Что касается самих работ Фермера, то их обнаружили именно в форме обычных писем. Местами не было целых страниц, и сохранились лишь обрывки переписок. Более интересен тот факт, что на протяжении трех веков ученые искали ту теорему, которая была обнаружена в трудах Фермера.

Но кто бы не решался ее доказать, попытки сводились к «нулю». Известный математик Декарт и вовсе обвинял ученого в хвастовстве, но все это сводилось лишь к самой обычной зависти. Помимо создания, Фермер еще и доказал собственную теорему. Правда решение было найдено для того случая, где n=4. Что касается случая для n=3, то его выявил математик Эйлер.

Как пытались доказать теорему Фермера

В самом начале 19 века данная теорема продолжила свое существование. Математики нашли много доказательств теорем, которые ограничивались натуральными числами в пределах двухсот.

А в 1909 году была поставлена на кон довольно крупная сумма, равная ста тысячам маркам немецкого происхождения – и все это только лишь за то, чтобы решить вопрос, связанный с этой теоремой. Сам фонд призовой категории был оставлен богатым любителем математики Паулем Вольфскелем, родом из Германии, кстати, именно он хотел «наложить на себя руки», но благодаря такой вовлеченности в теорему Фермера, захотел жить. Возникший ажиотаж породил тонны «доказательств», заполонивших германские университеты, а в кругу математиков родилось прозвище «фермист», которым полупрезрительно называли всякого амбициозного выскочку, не сумевшего привести явные доказательства.

Гипотеза японского математика Ютаки Танияма

Сдвигов в истории Великой теоремы до середины 20 столетия так и не наблюдалось, но одно занимательное событие все-таки произошло. В 1955 году математик из Японии Ютака Танияма, которому было 28 лет, явил миру утверждение из абсолютно другой математической области – его гипотеза в отличие от Ферма опередило свое время. Она гласит: «Каждой эллиптической кривой соответствует определенная модулярная форма». Вроде бы абсурд для каждого математика, подобно, что дерево состоит из определенного металла! Парадоксальную гипотезу, как и большинство прочих ошеломляющих и гениальных открытий, не приняли, так как еще попросту не доросли до нее. И Ютака Танияма покончил жизнь самоубийством, спустя три года – поступок необъяснимый, но, вероятно, честь для истинного гения-самурая была превыше всего.

Целое десятилетие о гипотезе не вспоминали, но в семидесятые она поднялась на пик популярности – ее подтверждали все, кто мог в ней разобраться, но, как и теорема Ферма, она оставалась недоказанной.

Как связаны гипотеза Таниямы и теорема Ферма

Спустя 15 лет в математике произошло ключевое событие, и оно объединило гипотезу прославленного японца и теорему Ферма. Герхард Грей заявил, что когда будет доказана гипотеза Танияма, тогда и найдутся доказательства теоремы Ферма. То есть последняя – это следствие гипотезы Танияма, и уже через полтора года профессором университета в Калифорнии Кеннетом Рибетом теорема Ферма была доказана.

Шло время, регресс заменялся прогрессом, а наука стремительно продвигалась вперед, особенно в области компьютерных технологий. Таким образом, значение n стало все больше повышаться.

В самом конце 20 века самые мощные компьютеры находились в лабораториях военного направления, было осуществлено программирование на вывод решения задачи всем известного Ферма. Как следствие всем попыткам было выявлено то, что данная теорема правильная для многих значений n, x, y. Но, к сожалению, окончательным доказательством это не стало, так как не было конкретики как таковой.

Джон Уайлс доказал великую Теорему Ферма

И вот, наконец, только в конце 1994 года, математик из Англии, Джон Уайлс нашел и продемонстрировал точное доказательство спорной теоремы Фермера. Тогда, после множества доработок, дискуссии по этому поводу пришли к своему логическому завершению.

Опровержение было размещено на более ста страницах одного журнала! Причем теорема была доказана на более современном аппарате высшей математики. И что удивительно, на тот момент, когда Фермер писал свой труд, такого аппарата в природе не существовало. Словом, человек был признан гением в этой области, с чем поспорить не мог никто. Несмотря на все что было, на сегодняшний день можно быть уверенными в том, что представленная теорема великого ученого Фермера оправдана и доказана, и споры и на эту тему не заведет ни одни математик со здравым смыслом, с чем согласны даже самые заядлые скептики всего человечества.

Полное имя человека, в честь которого была названа представленная теорема, звали Пьер де Фермер. Он внес свой вклад в самые разнообразные области математики. Но, к сожалению, большинство его трудов были опубликованы только после его смерти.

ФЕРМА ВЕЛИКАЯ ТЕОРЕМА - утверждение Пьера Ферма (французский юрист и по совместительству математик) о том, что диофантово уравнение X n + Y n = Z n , при показателе степени n>2, где n = целое число, не имеет решений в целых положительных числах. Авторский текст: "Невозможно разложить куб на два куба, или биквадрат на два биквадрата, или вообще степень, большую двух, на две степени с тем же самым показателем."

"Ферма и его теорема", Амадео Модильяни, 1920

Пьер придумал эту теорему 29 марта 1636-го года. А ещё через каких-то 29 лет скончался. Но тут-то всё и началось. Ведь состоятельный немецкий любитель математики по фамилии Вольфскель завещал сто тысяч марок тому, кто предъявит полное доказательство теоремы Ферма! Но ажиотаж вокруг теоремы был связан не только с этим, но и с профессиональным математическим азартом. Сам Ферма намекнул математическому сообществу, что знает доказательство - незадолго до смерти, в 1665-ом году он оставил на полях книги Диофанта Александрийского "Арифметика" следующую запись: "Я располагаю весьма поразительным доказательством, но оно слишком велико, чтобы его можно было разместить на полях."

Именно этот намёк (плюс, конечно, денежная премия) заставил математиков безуспешно тратить на поиск доказательства свои лучшие годы (по подсчётам американских учёных, только профессиональными математиками было потрачено на это 543 лет в общей сложности).

В какой-то момент (в 1901-ом) работа над теоремой Ферма приобрела сомнительную славу "работы, сродни поиску вечного двигателя" (появился даже уничижительный термин - "ферматисты"). И вдруг 23 июня 1993 года на математической конференции по теории чисел в Кембридже английский профессор математики из Принстонского университета (Нью-Джерси, США) Эндрю Уайлс объявил, что наконец-то доказал Ферма!

Доказательство, правда, было не только сложным, но и очевидно ошибочным, на что Уайлсу было указано его коллегами. Но профессор Уайлс всю жизнь мечтал доказать теорему, поэтому не удивительно что в мае 1994-го он представил на суд учёного сообщества новый, доработанный вариант доказательства. В нём не было стройности, красоты, и оно по-прежнему было весьма сложным - тот факт, что математики целый год (!) это доказательство анализировали, что бы понять, не является ли оно ошибочным, говорит сам за себя!

Но в итоге доказательство Уайлса было признано верным. А вот Пьеру Ферма его тот самый намёк в "Арифметике" математики не простили, и, фактически, стали считать его лжецом. Собственно, первым, кто рискнул усомниться в моральной чистоплотности Ферма был сам Эндрю Уайлс, который заметил, что "Ферма не мог располагать таким доказательством. Это доказательство ХХ века." Затем и среди других ученых укрепилось мнение, что Ферма "не мог доказать свою теорему другим путём, а доказать её тем путем, по которому пошёл Уайлс, Ферма не мог по объективным причинам."

На самом деле, Ферма конечно же мог доказать её, и чуть позже это доказательство будет аналитиками "Новой Аналитической Энциклопедии" воссоздано. Но - что же это за такие "объективные причины"?
Такая причина на самом деле только одна: в те годы, когда жил Ферма, не могла появиться гипотеза Таниямы, на которой и построил свой доказательство Эндрю Уайлс, ведь модулярные функции, которыми оперирует гипотеза Таниямы были открыты только в конце XIX века.

Как доказал теорему сам Уайлс? Вопрос непраздный - это важно для понимания того, каким образом свою теорему мог доказать сам Ферма. Уайлс построил своё доказательство на доказательстве гипотезы Таниямы, выдвинутой в 1955-ом 28-летним японским математиком Ютакой Таниямой.

Гипотеза звучит так: "каждой эллиптической кривой соответствует определенная модулярная форма". Эллиптические кривые, известные с давних пор, имеют двухмерный вид (располагаются на плоскости), модулярные же функции, имеют четырехмерный вид. Т.е гипотеза Таниямы соединила совершенно разные понятия - простые плоские кривые и невообразимые четырёхмерные формы. Сам факт соединения разномерных фигур в гипотезе показался учёным абсурдным, именно поэтому в 1955-ом ей не придали значения.

Однако осенью 1984 года о "гипотезе Таниямы" вдруг снова вспомнили, и не просто вспомнили, но связали её возможное доказательство с доказательством теоремы Ферма! Это сделал математик из Саарбрюкена Герхард Фрей, который сообщил учёному сообществу, что "если бы кому-нибудь удалось доказать гипотезу Таниямы, то тем самым была бы доказана и Великая теорема Ферма".

Что сделал Фрей? Он преобразовал уравнение Ферма в кубическое, затем обратил внимание на то, что эллиптическая кривая, полученная при помощи преобразованного в кубическое уравнения Ферма не может быть модулярной. Однако гипотеза Таниямы утверждала, что любая эллиптическая кривая может быть модулярной! Соответственно, эллиптическая кривая, построенная из уравнения Ферма не может существовать, значит не может быть целых решений и теоремы Ферма, значит она верна. Ну а в 1993-ем Эндрю Уайлс попросту доказал гипотезу Таниямы, а значит и теорему Ферма.

Однако, теорему Ферма можно доказать значительно проще, на основе той же самой многомерности, которой оперировали и Танияма, и Фрей.

Для начала, обратим внимание на условие, оговорённое самим Пьером Ферма - n>2. Для чего было нужно это условие? Да лишь для того, что при n=2 частным случаем теоремы Ферма становится обычная теорема Пифагора Х 2 +Y 2 =Z 2 , которое имеет бесчисленное множество целых решений - 3,4,5; 5,12,13; 7,24,25; 8,15,17; 12,16,20; 51,140,149 и так далее. Таким образом, теорема Пифагора является исключением из теоремы Ферма.

Но почему именно в случае с n=2 возникает подобное исключение? Всё становится на свои места, если увидеть взаимосвязь между степенью (n=2) и мерностью самой фигуры. Пифагоров треугольник - двухмерная фигура. Не удивительно, что Z (то есть гипотенуза), может быть выражена через катеты (X и Y), которые могут быть целыми числами. Размер угла (90) дает возможность рассматривать гипотенузу как вектор, а катеты - векторы, расположенные на осях и идущие из начала координат. Соответственно, можно выразить двумерный вектор, не лежащий ни на одной из осей, через векторы, на них лежащие.

Теперь, если перейти к третьему измерению, а значит к n=3, для того чтобы выразить трёхмерный вектор, будет недостаточно информации о двух векторах, а следовательно, выразить Z в уравнении Ферма можно будет как минимум через три слагаемых (три вектора, лежащих, соответственно, на трех осях системы координат).

Если n=4, значит, слагаемых должно быть уже 4, если n=5, то слагаемых должно быть 5 и так далее. В этом случае, целых решений будет хоть отбавляй. Например, 3 3 +4 3 +5 3 =6 3 и так далее (другие примеры для n=3, n=4 и так далее можете подобрать самостоятельно).

Что из всего этого следует? Из этого следует, что теорема Ферма действительно не имеет целых решений при n>2 - но лишь потому, что само по себе уравнение некорректно! С таким же успехом можно было бы пытаться выразить объём параллелепипеда через длины двух его рёбер - разумеется, это невозможно (целых решений никогда не будет найдено), но лишь потому, что для нахождения объёма параллелепипеда нужно знать длины всех трёх его рёбер.

Когда знаменитого математика Давида Гилберта спросили, какая задача сейчас для науки наиболее важна, он ответил "поймать муху на обратной стороне Луны". На резонный вопрос "А кому это надо?" он ответил так: "Это никому не надо. Но подумайте над тем, сколько важных сложнейших задач надо решить, чтобы это осуществить".

Другими словами, Ферма (юрист в первую очередь!) сыграл со всем математическим миром остроумную юридическую шутку, основанную на неверной постановке задачи. Он, фактически, предложил математикам найти ответ, почему муха на другой стороне Луны жить не может, а на полях "Арифметики" хотел написать лишь о том, что на Луне просто нет воздуха, т.е. целых решений его теоремы при n>2 быть не может лишь потому, что каждому значению n должно соответствовать определённое количество членов в левой части его уравнения.

Но была ли это просто шутка? Отнюдь. Гениальность Ферма заключается именно в том, что он фактически первый увидел взаимосвязь между степенью и мерностью математической фигуры - то есть, что абсолютно эквивалентно, количеством членов в левой части уравнения. Смысл его знаменитой теоремы был именно в том, чтобы не просто натолкнуть математический мир на идею этой взаимосвязи, но и инициировать доказательство существования этой взаимосвязи - интуитивно понятной, но математически пока не обоснованной.

Ферма как никто другой понимал, что установление взаимосвязи между, казалось бы, различными объектами чрезвычайно плодотворно не только в математике, но и в любой науке. Такая взаимосвязь указывает на какой-то глубокий принцип, лежащий в основе обоих объектов и позволяющий глубже понять их.

Например, первоначально физики рассматривали электричество и магнетизм как совершенно не связанные между собой явления, а в XIX веке теоретики и экспериментаторы поняли, что электричество и магнетизм тесно связаны между собой. В результате было достигнуто более глубокое понимание и электричества, и магнетизма. Электрические токи порождают магнитные поля, а магниты могут индуцировать электричество в проводниках, находящихся вблизи магнитов. Это привело к изобретению динамомашин и электромоторов. В конце концов было открыто, что свет представляет собой результат согласованных гармонических колебаний магнитного и электрического полей.

Математика времён Ферма состояла из островов знания в море незнания. На одном острове обитали геометры, занимающиеся изучением форм, на другом острове теории вероятностей математики изучали риски и случайность. Язык геометрии сильно отличался от языка теории вероятностей, а алгебраическая терминология была чужда тем, кто говорил только о статистике. К сожалению, математика и наших времён состоит примерно из таких же островов.

Ферма первым понял, что все эти острова взаимосвязаны. И его знаменитая теорема - ВЕЛИКАЯ ТЕОРЕМА ФЕРМА - отличное тому подтверждение.

Завистники утверждают, что французский математик Пьер Ферма вписал свое имя в историю всего одной фразой. На полях рукописи с формулировкой знаменитой теоремы в 1637 году он сделал пометку: "Я нашел удивительное решение, но здесь маловато места, чтобы его поместить". Тогда и началась удивительная математическая гонка, в которую наряду с выдающимися учеными включилась армия дилетантов.

В чем коварство задачи Ферма? На первый взгляд, она понятна даже школьнику.

В основе - известная каждому теорема Пифагора: в прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов: х 2 + у 2 = z 2 . Ферма утверждал: уравнение при любых степенях больше двух не имеет решения в целых числах.

Казалось бы, просто. Протяни руку, и вот ответ. Неудивительно, что академии разных стран, научные институты, даже редакции газет были завалены десятками тысяч доказательств. Их число беспрецедентно, уступает разве что проектам "вечных двигателей". Но если эти сумасшедшие идеи серьезная наука давно не рассматривает, то работы "фермистов" честно и заинтересованно изучает. И, увы, находит ошибки. Говорят, что за три с лишним века образовалось целое математическое кладбище решений теоремы.

Не зря говорят: близок локоть, а не укусишь. Проходили года, десятилетия, века, и задача Ферма представлялась все более удивительной и заманчивой. Вроде бы простенькая, она оказалась не по зубам стремительно наращивающему мускулы прогрессу. Человек уже расщепил атом, добрался до гена, ступил на Луну, а Ферма не давался, продолжая манить потомков ложными надеждами.

Однако попытки одолеть научную вершину не прошли даром. Первый шаг сделал великий Эйлер, доказав теорему для четвертой степени, затем для третьей. В конце XIX века немец Эрнст Куммер довел число степеней до ста. Наконец, вооружившись компьютерами, ученые увеличили эту цифру до 100 тысяч. Но Ферма-то говорил о любых степенях. В этом состояла вся загвоздка.

Конечно, мучились ученые над задачей не из-за спортивного интереса. Знаменитый математик Давид Гильберт говорил, что теорема - это пример, как вроде бы малозначительная проблема может оказать на науку огромное влияние. Работая над ней, ученые открыли совершенно новые математические горизонты, например, были заложены фундаменты теории чисел, алгебры, теории функций.

И все же Великая теорема была в 1995 году покорена. Ее решение представил американец из Принстонского университета Эндрю Уайлс, и оно официально признано научным сообществом. Более семи лет жизни отдал он, чтобы найти доказательство. По мнению ученых, эта выдающаяся работа свела воедино труды многих математиков, восстановив утраченные связи между разными ее разделами.

Итак, вершина взята, и наука ответ получила, - сказал корреспонденту "РГ" ученый секретарь Отделения математики Российской академии наук, доктор технических наук Юрий Вишняков. - Теорема доказана, пусть и не простейшим способом, на чем настаивал сам Ферма. А теперь желающие могут печатать свои варианты.

Однако семейство "фермистов" вовсе не собирается признавать доказательство Уайлса. Нет, они не опровергают решение американца, ведь оно очень сложное, а потому понятно лишь узкому кругу специалистов. Но не проходит недели, чтобы в Интернете ни появилось новое откровение очередного энтузиаста, "наконец-то поставившего точку в многолетней эпопее".

Кстати, буквально вчера в редакцию "РГ" позвонил один из старейших в нашей стране "фермистов" Всеволод Ярош: "А вы знаете, что теорему Ферма я доказал еще до Уайлса. Более того, потом нашел у него ошибку, о чем написал выдающемуся нашему математику академику Арнольду с просьбой напечатать об этом в научном журнале. Теперь жду ответа. Переписываюсь по этому поводу и с французской академией наук".

И вот только что, как сообщается в ряде СМИ, с "легким изяществом раскрыл великую тайну математики", еще один энтузиаст - бывший генеральный конструктор ПО "Полет" из Омска, доктор технических наук Александр Ильин. Решение оказалось настолько простым и коротким, что поместилось на маленьком участке газетной площади одного из центральных изданий.

Редакция "РГ" обратилась в ведущий в стране Институт математики им. Стеклова РАН с просьбой оценить это решение. Ученые были категоричны: нельзя комментировать газетную публикацию. Но после долгих уговоров и учитывая повышенный интерес к знаменитой задаче, согласились. По их словам, в опубликованном очередном доказательстве допущено несколько принципиальных ошибок. Кстати, их вполне мог бы заметить даже студент математического факультета.

И все же редакция хотела получить информацию из первых рук. Тем более что вчера в академии авиации и воздухоплавания Ильин должен был представить свое доказательство. Однако оказалось, что о такой академии мало кто знает даже среди специалистов. А когда все-таки с величайшим трудом удалось разыскать телефон ученого секретаря этой организации, то, как выяснилось, он даже не подозревал, что именно у них должно состояться столь историческое событие. Словом, корреспонденту "РГ" стать свидетелем мировой сенсации так и не удалось.